Induktiivinen päättely tunnetaan myös nimellä "alhaalta ylöspäin" -logiikka. Se on eräänlainen päättely, joka keskittyy yleisten lausuntojen luomiseen erityisten esimerkkien tai tapahtumien perusteella. Kun tämäntyyppinen päättely toteutetaan, käytämme konkreettisia esimerkkejä, jotka voivat olla totta tai eivät. sitten ne siirretään yleistettyihin käsitteisiin.
Voimme sanoa, että induktiivinen päättely toimii kuin väline kehittyneitä matematiikan, vaikka olemme olleet käyttää sitä, koska olimme vauvoja! Kun käytämme induktiivista päättelyä, käytämme kokemuksiamme ja havaintojamme johtopäätösten tekemiseksi tulevaisuudessa. Muutaman ensimmäisen kerran pudotimme jotain lapsena, esine putosi maahan. Lopulta päätimme, että tämä malli jatkuu, riippumatta siitä, mikä esine oli: asiat putoavat. Induktiivinen päättely on tärkeä tapa löytää uusia asioita matematiikassa.
Tieteellisestä näkökulmasta induktiivinen päättely kehittyi 1700-luvulta lähtien filosofi Francis Baconin myötävaikutuksella. Tämä filosofi katsoi, että yleisiin johtopäätöksiin voidaan päästä taulukoiden avulla, joissa tietoja kerätään systemaattisesti ja järjestetyllä tavalla tutkittavasta.
Yleensä tämän päättelymuodon sanotaan kulkevan tietystä yleiseen. Joten joissakin erityistapauksissa niiden välillä havaitaan tietty säännöllisyys, ja tämän logiikan avulla voimme tehdä yleisen johtopäätöksen. Toisin sanoen konkreettisia tapahtumia tarkkaillaan yksityiskohtaisesti, ja sen jälkeen ehdotetaan lakia, joka selittää tällaisten tapahtumien säännöllisyyden.
Induktio luo yleisiä lakeja, jotka perustuvat todellisten tapahtumien havaitsemiseen. Siksi se on yleistys, joka voi olla väärä. Näin ollen induktiivisen menetelmän johtopäätökset tai lait ovat todennäköisiä ja voimassa vain niin kauan kuin mikään tapaus ei ole ristiriidassa yleistämisen kanssa. Induktivismia on kritisoitu päteväksi päättelystrategiaksi, koska sillä on useita porsaanreikiä.
Induktiivinen ja deduktiivinen ovat kaksi erilaista päättelymenetelmää, joita käytetään laajasti myös filosofiassa ja melkein kaikissa tieteellisissä tutkimuksissa.
Nämä menetelmät ovat osa loogista ajattelua ja analyyttisiä prosesseja, mutta on tärkeää tietää, että ne ovat täysin erilaisia toisistaan ja että niitä käytetään tutkijan tarpeiden perusteella.